DIFF2D: моделирование плазмохимических процессов в диффузионном приближении

Ляхов Анатолий Александрович

Омский государственный университет им. Ф.М. Достоевского

Плазмохимические технологии

Плазмохимическое осаждение (PECVD – plasma enhanced chemical vapour deposition)

Основное преимущество

Обеспечение протекания высокоэнергетических процессов при низкой температуре рабочего газа.

Электроразрядный способ активации плазмы очень гибок и технически удобен.

Методы исследования

Решаемые задачи:

- Определение концентраций плазменных частиц вблизи подложки в зависимости от внешних параметров;
- установление основных механизмов плазмохимического процесса (маршруты образования целевых продуктов).
- масштабирование лабораторных систем до промышленных

Статистические методы (молекулярной динамики, Монте-Карло, частиц-в-ячейках и др.) требуют больших вычислительных ресурсов. Недостаток информации об элементарных столкновительных процессах.

Входные данные

Гидродинамические модели: коэффициенты переноса (диффузии, подвижности, теплопроводности и т.д.), константы скоростей химических реакций;

Кинетические: сечения рассеяния частиц, концентрации возбужденных состояний;

Статистические: потенциалы межмолекулярного взаимодействия/дифференциальные сечения рассеяния и др.

Информация о *параметрах взаимодействия частиц с поверхностью*: коэффициенты распыления, прилипания, аккомодации энергии и т.д.

Puc. 1. Структура DIFF2D

Кинетика электронов в плазме

Кинетическое уравнение Больцмана:

$$\frac{\partial f_0}{\partial t} = \frac{E^2 \nu_m^2}{3m\sqrt{\varepsilon}(\omega^2 + \nu_m^2)} \frac{\partial}{\partial \varepsilon} \left(\frac{\varepsilon^{3/2}}{\nu_m} \frac{\partial f_0}{\partial \varepsilon}\right) + \mathrm{St}^{\mathsf{yn}} f_0 + \mathrm{St}^{\mathsf{Hy}} f_0, \tag{1}$$

 $f_0(\varepsilon)$ – функция распределения электронов по энергии, St^{yn} , St^{Hy} – интегралы упругих и неупругих столкновений.

(1) решается конечно-разностным методом – счет на установление по неявной схеме Эйлера до выравнивания токов на частицу.

В программе имеется возможность решать задачу о зарядке пылевых частиц микронного размера в неравновесной плазме.

Выходные данные: ФРЭЭ, кинетические коэффициенты $(D_e(E/N), \mu_e(E/N), k_i(E/N))$

Параметры расчета ФРЭЭ

рабочий газ: частота поля: давление: температура: приведенное поле: концентрация ионов: энергия ионов: массовая плотность пыли:

Ar, Ar+5%SiH₄

$$f = 13,56 \text{ MFu}$$

 $\rho = 0,1 \text{ Topp}$
 $T = 300 \text{ K}$
 $E/N = 5 \cdot 10^{-18} - 5 \cdot 10^{-15} \text{ B} \cdot \text{cm}^2$
 $n_i = 10^{10} \text{ cm}^{-3}$
 $E_i = 0,025 - 0,1 \text{ sB}$
 $\rho_d = 1 \text{ r/cm}^3$

а,см	<i>п_d</i> ,см ⁻³	ξ_d , cm ⁻¹
10 ⁻⁵	10 ⁶	$1 \cdot 10^{-4}$
$4 \cdot 10^{-6}$	$3,13\cdot10^7$	$5 \cdot 10^{-4}$
10 ⁻⁵	10 ⁷	1 · 10 ^{−3}
$1.4 \cdot 10^{-5}$	10 ⁷	2 · 10 ^{−3}

пылесодержание:

ФРЭЭ в силановой плазме

Рис. 2. ФРЭЭ в плазме Ar+5%SiH₄

Рис. 3. Константа скорости диссоциации SiH₄

Распределение неупругих потерь

Рис. 4. <u>Аг</u>: 1– возбуждение ${}^{3}P_{0,2}$; 2 – возбуждение; 3 – ионизация. <u>SiH4</u>: 4 – колебательное возбуждение моды v24; 5 – колебательное возбуждение моды v13; 6, 7 – электроннное возбуждение; 8 – ионизация, 9 – прилипание к пыли. а) $\xi_d = 10^{-3}$ см⁻¹ 6) $\xi_d = 5 \cdot 10^{-3}$ см⁻¹

Диффузионная модель

Диффузия компонентов с учетом химических реакций:

$$\frac{\partial N_k(r,z)}{\partial t} = D_k \nabla_{r,z}^2 N_k + S_k(r,z), \qquad (2)$$

D_k – скалярный коэффициент диффузии частиц сорта *k*. Граничные условия:

$$D_{k} \frac{\partial N_{k}}{\partial q} \bigg|_{r=R,z=0,L} = \frac{s_{k} N_{k} v_{T}}{2(2-s_{k})}, \ q = r, z$$

$$D_{k} \frac{\partial N_{k}}{\partial r} \bigg|_{r=0} = 0$$
(3)

 s_k – коэффициент прилипания, $v_T = \sqrt{8kT/\pi M_k}$ – тепловая скорость

Метод решения системы уравнений переноса

$$\Omega = [0, R] \times [0, L], \ (\omega_{ij}, r_i = r_{i-1} + h_{r,i}, z_j = z_{j-1} + h_{z,j}), i = 0, 1, \dots, (N_R - 1), \ j = 0, 1, \dots, (N_Z - 1)$$

На каждом временном полуслое СЛАУ решаются скалярной прогонкой.

R

Модельная задача

Уравнение диффузии в цилиндре без источников. Решение:

$$u(t,r,z) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} C_{nm} e^{-D^2 \left(\frac{(\mu_0^{(n)})^2}{R^2} + \nu_m^2\right)t} \cdot J_0 \left(\frac{\mu_0^{(n)}}{R}r\right) \cdot \sin(\nu_m z + \vartheta_m), \quad (4)$$

Рис. 5. Аналитическое и численное решение модельной задачи. 100% Ar, *p* = 0,1 Торр

Аппроксимационная сходимость

Диффузия Ar, Ar^M в реакторе R=6 см, L=3 см $\rho = 0.1$ Topp, $n_e = 10^9$ см $^{-3}$

Число сеточных узлов N=32,64,128,256. Реакции: $e+Ar \rightarrow e+Ar^++e$ $e+Ar \rightarrow Ar^M+e$ $e+Ar^M \rightarrow e+Ar$ $e+Ar^M \rightarrow e+Ar^++e$ $Ar+Ar^M \rightarrow Ar+Ar$

Состав модели в приложении к плазме Ar+SiH₄

		Параметры расчета		
		Содержание моносилана	x = 1 - 10%	
0	рабочий газ: Ar, SiH4;	Давление:	ho= 0,1 Topp	
•	радикалы: SiH _r . (x=1-3). Si:	Температура:	<i>T</i> = 500 K	
		Размеры реактора:	R = 6 см, L = 3 см	
	ПОЛИСИЛАНЫ И ИХ РАДИКАЛЫ: Si $U = (y = 2.6)$ Si $U = Si U$	Интервал моделирования	$T = 10^{-1}$ сек.	
	$S_{12}\Pi_y$ (y=2-0), $S_{13}\Pi_7$, $S_{13}\Pi_8$, Si U Si U	Число узлов сетки:	$N_R = N_Z = 32-64$	
	SI4H9, SI4H10, SI5H11, SI5H12;	Шаг интегрирования:	$dt = 10^{-7}$ сек.	
0	H, H ₂ ;	Населенность Ar ^M :	$n_{\Delta r^{M}}/n_{Ar} = 10^{-7}$	
٩	метастабильные состояния	Блок ФРЭЭ:		
	аргона Ar ^M (11,55 эВ,	Концентрация пыли:	$n_d = 10^7 \mathrm{cm}^{-3}$	
	суммарно).	Радиус частиц пыли:	$a = 10^{-5}$ см	
		Приведенное поле:	$E/N = 1 \cdot 10^{-15} \mathrm{B} \cdot \mathrm{cm}^2$	

Около 60 бимолекулярных химических реакций – (Kushner, 1988), (Perrin, 1996), (Leroy, 1998), (Kwon, 2009).

$$Pe = \frac{uL}{D} = 4,03 \frac{LQ}{\rho R^2 D}, \quad [Q] = ctg.cm^3/мин, [\rho] = Topp$$
 (5)

Для Si₅H₁₂ $D \approx 57 \text{ см}^2/\text{с}$ (Ar+5%SiH₄ $\rho = 0,1$ Торр и T = 500 K) и по критерию $\text{Pe} \le 0,1$ допустимый расход газа $Q \le 1,7$ стд.см³/мин. при котором конвективным движением можно пренебречь.

Кинетика роста радикалов

Рис. 6. Относительная концентрация силановых радикалов и водорода. Ar+5%SiH₄, $\rho = 0,1$ Торр

Диффузионный профиль SiH₃ и потоки

Рис. 7. а) Пространственное распределение SiH₃ (относительная концентрация); б) аксиальные плотности потоков частиц на торцевую поверхность разрядной камеры при z = L

Анализ кинетики радикалов

Источниковый член в уравнении диффузии *k*-го компонента:

$$S_{k}(r,z) = \sum_{i=1}^{L_{k}} w_{k,i} K_{i} n_{A(i)} n_{B(i)} - n_{k} \sum_{j=1}^{P_{k}} K'_{j} n_{C(j)}$$
(6)

 $w_{k,i}$ – стехиометрический коэффициент $n_{A(i)}, n_{B(i)}, n_{C(j)}$ – концентрации реагентов сортов A(i), B(i), C(j)K, K' – константы скоростей реакций прибыли и убыли

Для всех реакций *k*-го компонента во время вычислений накапливаются значения соответствующих слагаемых в суммах правой части (6)

Кинетика химических реакций

Рис. 8. Парциальный вклад реакций: а) образование радикала SiH₃; б) диссоциации SiH₄

Заключение

DIFF2D: математическая модель переноса нейтральных компонентов химически активной плазмы в реакторе цилиндрической геометрии.

- расчет кинетических параметров неравновесной электронной подсистемы;
- пространственное распределение концентраций реагентов, диффузионные потоки частиц;
- покомпонентный численный анализ химической кинетики на заданном временном интервале.

СПАСИБО ЗА ВНИМАНИЕ!

Сечения рассеяния электронов на Ar и He

Puc. 9. Morgan database, (LXCAT, 2017)

Сечения рассеяния электронов на SiH₄

Puc. 10. Morgan database, (LXCAT, 2017)

Интегралы столкновений

$$\operatorname{St}^{\operatorname{yn}} f_{0} = \frac{\partial}{\partial \varepsilon} \left[\frac{m_{e}}{M} \sqrt{\varepsilon} \nu^{\operatorname{yn}}(\varepsilon) \left(f_{0} + T \frac{\partial f_{0}}{\partial \varepsilon} \right) \right]$$
(7)
$$\operatorname{St}^{\operatorname{Hy}} f_{0} = \sum_{k} \left(\nu_{k}^{\operatorname{Hy}}(\varepsilon + \varepsilon_{k}^{*}) f_{0}(\varepsilon + \varepsilon_{k}^{*}) - \nu_{k}^{\operatorname{Hy}}(\varepsilon) f_{0}(\varepsilon) \right)$$
(8)

Кинетические коэффициенты

Коэффициент диффузии электронов (Голант, 1977) -

$$D_e = \frac{2}{3m_e} \int_{0}^{\infty} \frac{\varepsilon f_0(\varepsilon)}{\nu_m(\varepsilon)} d\varepsilon, \qquad (9)$$

подвижность электронов -

$$\mu_{e} = \frac{2e}{3m_{e}} \int_{0}^{\infty} \left(\varepsilon \frac{\partial f_{0}}{\partial \varepsilon} - \frac{f_{0}}{2} \right) \frac{d\varepsilon}{\nu_{m}(\varepsilon)}, \tag{10}$$

 $[f_0(\varepsilon)] = \Im B^{-1}$

Приближение локальной энергии

Пространственный профиль кинетических коэффициентов электронов $K(\vec{r})$ через профиль средней энергии электронов по схеме:

$$\varepsilon_{e}(\vec{r})
ightarrow |E/N|(\vec{r})
ightarrow K(\vec{r}).$$

Зависимости $\varepsilon_e(E/N)$, K(E/N) предварительно табулируются с помощью подпрограммы расчета ФРЭЭ.

Коэффициенты диффузии D_k вычислялись по формуле Уилке:

$$D_k = (n - n_k) \left[\sum_{j, j \neq k} n_j / D_{kj} \right]^{-1}$$
(11)

Бинарные коэффициенты D_{kj}

$$D_{jk} = 1.412308 rac{\sqrt{T^3/\mu_{kj}}}{p\sigma_{jk}^2\Omega_{jk}^*(T_{jk}^*)} ~\left[rac{cM^2}{c}
ight]$$
 (12)

(Гиршфельдер, 1961), (Perrin, 1996), (Горбачев, 2000)

Коэффициенты диффузии (р=0,1 Тор, Т=500 К)

Компонент	σ, Α	$\varepsilon/k_{\rm B}T$	<i>D</i> ,см²/с	s
SiH ₄	4,084	207,6	140,30	0,00
Ar	3,542	93,3	167,78	0,00
SiH ₃	3,943	170,3	150,42	0,15
SiH ₂	3,803	133,1	162,10	1,00
SiH	3,662	95,8	176,18	1,00
Si	2,910	3036,0	123,41	1,00
Н	2,50	30,0	1149,40	0,20
H ₂	2,915	59,7	677,96	0,00
Si ₂ H ₂	4,383	323,8	106,41	1,00
Si ₂ H ₃	4,494	318,2	103,40	1,00
Si ₂ H ₄	4,601	312,6	100,62	1,00
Si ₂ H ₅	4,717	306,9	97,75	0,15
Si ₂ H ₆	4,828	301,3	95,12	0,00
Si ₃ H ₈	5,562	331,2	74,21	0,00
Si ₃ H ₇	5,08	120,0	93,77	0,15
Si ₄ H ₉	5,80	331,2	67,91	0,15
Si ₄ H ₁₀	5,80	331,2	67,84	0,00
Si₅H ₁₁	6,50	331,2	57,35	0,15
Si ₅ H ₁₂	6,50	331,2	57,31	0,00
Ar ^M	3,44	331,2	148,59	0,00

N₂	Реакция	<i>k</i> , см ³ /с	N₂	Реакция	<i>k</i> , см ³ /с
1	$e + SiH_4 \to e + SiH_3 + H$	F	30	$Si_2H_4 + H_2 \rightarrow SiH_4 + SiH_2$	$3.56 \cdot 10^{-9}$
2	$e + SiH_4 \rightarrow e + SiH_2 + 2H$	F	31	$Si_2H_5 + H \rightarrow Si_2H_4 + H_2$	$1.00 \cdot 10^{-10}$
3	e + SiH ₄ \rightarrow SiH + H + H ₂ +e	F	32	$Si_2H_6 + H \rightarrow SiH_4 + SiH_3$	$6.70 \cdot 10^{-12}$
4	$e + SiH_4 \to SiH_2 + H_2 + e$	F	33	$Si_2H_6 + H \rightarrow Si_2H_5 + H_2$	$1.30 \cdot 10^{-12}$
5	$e + H_2 \rightarrow e + 2H$	F	34	$Si_2H_3 + H_2 \rightarrow Si_2H_5$	$1.70 \cdot 10^{-12}$
6	$e + Si_2H_6 \to e + SiH_4 + SiH_2$	F	35	$Si_3H_8 + H \rightarrow Si_2H_5 + SiH_4$	$1.97 \cdot 10^{-11}$
7	$e + Si_2H_6 \to e + Si_2H_4 + H_2$	F	36	$Ar^{M} + SiH_{4} \rightarrow SiH_{2} + 2H + Ar$	$2.60 \cdot 10^{-10}$
8	$e + Ar \rightarrow e + Ar^M$	F	37	$Ar^{M} + SiH_{4} \rightarrow SiH_{3} + H + Ar$	$1.40 \cdot 10^{-10}$
9	$e + Ar^M \to e + Ar$	F	38	$Ar^{M}+H_{2} \rightarrow 2H + Ar$	$7.00 \cdot 10^{-11}$
10	$e + Ar^M \rightarrow e + Ar^+ + e$	F	39	$Ar^{M} + SiH_{3} \rightarrow SiH_{2} + H + Ar$	$1.00 \cdot 10^{-10}$
11	$SiH_4 + H \rightarrow SiH_3 + H_2$	$2.80 \cdot 10^{-11}$	40	$Ar^{M} + SiH_{2} \rightarrow SiH + H + Ar$	$1.00 \cdot 10^{-10}$
12	$SiH_4 + SiH \rightarrow Si_2H_3 + H_2$	$2.18 \cdot 10^{-11}$	41	Ar^M + SiH \rightarrow Si+H+Ar	$1.00 \cdot 10^{-10}$
13	$\rm SiH_4+SiH\rightarrowSi_2H_5$	$2.50 \cdot 10^{-12}$	42	$Ar^{M} + Si_{2}H_{6} \rightarrow Si_{2}H_{4}$ + 2H+ Ar	$6.60 \cdot 10^{-10}$
14	$SiH_3 + H \rightarrow SiH_2 + H_2$	$5.00 \cdot 10^{-10}$	43	$Ar^{M} + Si_{2}H_{6} \rightarrow Si_{2}H_{2} + 2H + Ar$	$6.60 \cdot 10^{-10}$
15	$SiH_2 + H_2 \rightarrow SiH_4$	$7.66 \cdot 10^{-15}$	44	$Ar^{M} + Ar^{M} \rightarrow Ar^{+} + Ar + e$	$8.00 \cdot 10^{-9}$
16	$SiH_2 + H \rightarrow SiH + H_2$	$2.31 \cdot 10^{-11}$	45	$\rm SiH_2 + Si_2H_6 \rightarrow Si_3H_8$	$2.03 \cdot 10^{-11}$
17	$SiH_2 + SiH \rightarrow Si_2H_3$	$7.22 \cdot 10^{-13}$	46	$\rm SiH + Si_2H_6 \rightarrow Si_3H_7$	$1.00 \cdot 10^{-11}$
18	$SiH_3 + SiH_3 \rightarrow SiH_4 + SiH_2$	$3.00 \cdot 10^{-11}$	47	$SiH_2 + Si_3H_8 \rightarrow Si_4H_{10}$	$1.00 \cdot 10^{-11}$
19	$\rm SiH_2+SiH_2\rightarrowSi_2H_2+H_2$	1.08 · 10 ⁻⁹	48	$\rm Si_3H_8+SiH_3\rightarrowSi_4H_9+H_2$	$1.00 \cdot 10^{-11}$
20	$SiH_3 + SiH_2 \rightarrow Si_2H_5$	$3.77 \cdot 10^{-13}$	49	$Si_2H_5 + Si_2H_5 \rightarrow Si_4H_{10}$	$1.00 \cdot 10^{-11}$
21	$SiH_4 + Si_2H_4 \rightarrow Si_3H_8$	1.00 · 10 ⁻¹⁰	50	$Si_2H_4 + Si_2H_6 \rightarrow Si_4H_{10}$	$1.00 \cdot 10^{-11}$
22	SiH + H \rightarrow Si + H ₂	1.70 · 10 ⁻¹⁰	51	$Si_3H_7 + H \rightarrow Si_3H_8$	$1.00 \cdot 10^{-11}$
23	$SiH_4 + Si \rightarrow Si_2H_2 + H_2$	$1.62 \cdot 10^{-13}$	52	$\rm SiH + Si_3H_8 \rightarrow Si_4H_9$	$1.00 \cdot 10^{-11}$
24	$SiH_2 + Si \rightarrow Si_2H_2$	$4.53 \cdot 10^{-13}$	53	$Si_4H_9 + H \rightarrow Si_4H_{10}$	$1.00 \cdot 10^{-11}$
25	$SiH_4 + SiH_2 \rightarrow Si_2H_6$	1.05 · 10 ⁻¹¹	54	$SiH + Si_4H_{10} \rightarrow Si_5H_{11}$	$1.00 \cdot 10^{-11}$
26	$Si_2H_2 + H \rightarrow Si_2H_3$	$4.94 \cdot 10^{-11}$	55	$\rm SiH_2 + Si_4H_{10} \rightarrow Si_5H_{12}$	$1.00 \cdot 10^{-11}$
27	$Si_2H_2 + H_2 \rightarrow Si_2H_4$	1.40 · 10 ⁻¹¹	56	$\mathrm{SiH}_3 + \mathrm{Si}_4\mathrm{H}_{10} \rightarrow \mathrm{Si}_5\mathrm{H}_{11} + \mathrm{H}_2$	$1.00 \cdot 10^{-11}$
28	$\text{SiH}_4 + \text{Si}_2\text{H}_5 \rightarrow \text{SiH}_3 + \text{Si}_2\text{H}_6$	$5.00 \cdot 10^{-13}$	57	$Si_5H_{11} + H \rightarrow Si_5H_{12}$	$1.00 \cdot 10^{-11}$
29	$\text{SiH}_3 + \text{Si}_2\text{H}_6 \rightarrow \text{SiH}_4 + \text{Si}_2\text{H}_5$	$2.76 \cdot 10^{-12}$			

Ляхов А.А. (ОмГУ)